Воскресенье, 17.11.2019, 19:08
Приветствую Вас Гость

АНМ-Портал

Донецкий телемастер. Вызвать телемастера на дом в Донецке (066)3375723, (071)3569848

Меню сайта
Главная » Статьи » Радиоэлектроника и телевидение » Посвящение в радиоэлектронику

Самое простое управление
Электронный клапан - триод Попробуйте отвернуть водопроводный кран и пустить холодную воду. Поворачиваем ручку крана, и из него льется струя холодной воды. Разве мы потратили много сил и энергии на поворот крана? Вовсе нет, а струя тем не менее сильная. А если мы откроем ворога шлюза в плотине? Хлынет вода, она приведет в действие гидроагрегат, и тысячи киловатт электроэнергии поступят в единую энергетическую сеть страны. Разве это мы затратили столько энергии? Вовсе нет, мы просто управляли шлюзом.
 Водитель тяжелого грузовика слегка нажимает на педаль акселератора, и многотонная махина резко набирает скорость. Не водитель же ее двигает! Разумеется, двигатель, водитель только управляет. Вы сами можете придумать тысячи примеров непосредственного управления в его простейшем виде.
 В школьном курсе физики изучают устройство радиолампы - катод, анод, управляющая сетка... Стоп! Опять управление! Кстати, если английское слово valve-лампа перевести дословно, то получим «клапан» или «кран». Чем же этот «кран» управляет? Не потоком воды, разумеется, а потоком электронов. Накаленный катод лампы испускает электроны. В любом проводнике, а хорошим проводником электрического тока являются металлы, имеется так называемый электронный газ - множество свободных отрицательных электрических зарядов электронов. Атомы металла объединены в общей кристаллической структуре твердого тела, причем внешние электроны атомов, слабее всех связанные со своим «родным» ядром, получают возможность переходить от атома к атому, т. е. блуждать по всему металлу, как кипплинговская кошка, которая «гуляла сама по себе». Но покинуть металл электроны не могут, потому что они несут отрицательный заряд. Заряд одного электрона весьма мал: е= 1,6*10-19 Кл. Тем не менее, если один электрон вырвется из металла, металл приобретет точно такой же по величине положительный заряд. Заряды противоположных знаков притягиваются (обратите внимание, как часто в жизни даже противоположные характеры тянутся друг к другу), и эти силы притяжения как бы втягивают электрон обратно в металл. Работа, которая требуется, чтобы удалить один электрон из металла, называется работой выхода. У разных металлов она разная, поэтому катод радиолампы стараются изготовить из металла с наименьшей работой выхода, например бария. Ну а если такой металл механически недостаточно прочен, его напыляют на более жесткий и тугоплавкий материал катода, обычно вольфрам. Когда катод разогревается током, проходящим по нити накала, до светло-красного каления, электроны в катоде двигаются быстрее. Они участвуют в тепловом движении - как бы сутолоке атомов, молекул, образующих нагретое вещество. Пока вещество не расплавилось от нагрева, атомы остаются на своих местах в кристаллической решетке, они лишь колеблются все быстрее и быстрее. А вот электронам приходится туго. Как легкие мячики, их швыряют от атома к атому. И при достаточно сильном броске электрон приобретает кинетическую энергию, достаточную для совершения работы выхода. Таким образом, когда кинетическая энергия теплового движения электронов, пропорциональная температуре катода, становится сравнимой с работой выхода, происходит термоэлектронная эмиссия-излучение электронов нагретым катодом.
Термоэлектронная эмиссия Анод, заряженный положительно, притягивает и собирает вылетевшие из катода электроны. Несмотря на то, что в баллоне Напряжение на сетке близко к нулюлампы глубокий вакуум, а катод и анод изолированы друг от друга, между этими электродами появляется электрический ток-направленное движение электронов, носителей заряда. Управляющая сетка, помещенная между катодом и анодом, служит тем самым «шлюзом», или «краном». Если сетка заряжена отрицательно по отношению к катоду, она отталкивает электроны, не пропуская их к аноду. По мере уменьшения отрицательного потенциала сетки все большая часть наиболее «шустрых» электронов (обладающих максимальной скоростью) проникает сквозь нее и попадает на анод. Анодный ток при этом увеличивается. При нулевом потенциале сетки почти все электроны достигают анода и анодный ток стремится к максимальному значению. Так действует электронная лампа - подобно вентилю, регулирующему потокНа сетке большое отрицательное напряжение воды из крана. Главным достоинством электронной лампы по сравнению с любыми другими вентилями и кранами является исключительно высокое быстродействие. Процесс включения и выключения анодного тока у современных ламп может длиться всего 10-9 с, или 1 нс. Благодаря столь высокому быстродействию электронные лампы пригодны для усиления и генерирования колебаний очень высокой частоты, а также для создания быстродействующих управляющих, логических и вычислительных устройств. Правда, в последних из перечисленных областей применения электронные лампы практически полностью вытеснены полупроводниковыми элементами. Тем не менее с помощью электронной лампы можно проиллюстрировать процесс управления, поэтому мы рассмотрели ее так подробно.

Категория: Посвящение в радиоэлектронику | Добавил: AndryM (21.02.2011) | Автор: Андрей E W
Просмотров: 1354 | Теги: триод, Радиолампа, управление в электронике
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Поиск по сайту
Друзья сайта